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An experimental and theoretical study is carried out of the flow of granular material in cylinders with
different cross-sectional shapes rotated about their axes. The flow of particles in such geometries is confined to
a shallow layer at the free surface. The length and thickness of the layer shrink and expand periodically with
rotation of the cylinder, resulting in chaotic advection and improved mixing of passive tracers. Experimental
results obtained by flow visualization are reported for quasi-two-dimensional mixers half filled with glass
beads. A depth-averaged flow model to predict the time-varying layer thickness profile is presented, along with
a perturbation solution in terms of a small parameter k, which is the ratio of the maximum layer thickness to
the half length of the layer �L�, at the cross-section orientation when the length is minimum. To the lowest
order �O�k0��, the model predicts that the layer profiles scaled with L��� at different mixer orientation angles
��� are identical and the same as that for a circle. The measured layer thickness profiles averaged over different
orientations of noncircular mixers match reasonably well with the theory, but the standard deviations are larger
for the noncircular cylinders compared to the circle. The O�k� perturbation solution and the full theory both
predict that the scaled layer thickness varies periodically; the deviations are proportional to the rate of change
of the length with orientation. The perturbation solution gives results close to those from the numerical solution
except at cylinder orientations when the length of the flowing layer changes sharply. The measured variation of
the scaled midlayer thickness with orientation for all geometries is well predicted by the theory.
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I. INTRODUCTION

Rotating cylinders are commonly used in many industrial
processes involving granular materials for operations such as
mixing, drying, coating, and granulation �1�. With increasing
rotational speed of the cylinder, different flow regimes—
slipping, avalanching, rolling, cascading, cataracting, and
centrifuging—are obtained �2,3�. The rolling flow regime is
the most common mode of operation in industrial systems.
The flowing material in this regime is confined to a shallow
layer at the free surface and the rest of the material under-
goes a solid body rotation as a fixed bed �4,5�.

The length of the flowing layer changes with orientation
of the mixer and thus the flow of granular particles in non-
circular rotating cylinders is time periodic. The time-periodic
flow leads to chaotic advection of particles, thereby improv-
ing the overall mixing efficiency in noncircular cross sec-
tions �6�. In segregating systems, different segregation pat-
terns are obtained as a result of the balance between chaotic
mixing and segregation �7,8�.

Although the surface flow of granular materials in rotating
circular cylinders has been studied theoretically �5,9–12� and
experimentally �9,12–14�, the flow in noncircular cross sec-
tions has not been investigated in any detail. Experiments in
a rotating cylinder with square and elliptical cross sections
rotated at low speeds indicate that the ratio of midlayer layer
thickness to the length remains nearly unchanged with time
�6�. This model has been used to describe cross-sectional
mixing and segregation in cylinders with noncircular cross
sections �6–8,15,16�. A similar approach has been used for
analyzing mixing and segregation in circular cylinders but

with a periodically varying rotational speed �17�. A more
detailed understanding of the flow in noncircular geometries
would be useful for a better description of mixing and seg-
regation in such systems, which have the potential for prac-
tical application.

In this paper we make a study of the flow in cylinders
with different noncircular cross sections at steady state by
means of theory and experiment. The shapes of the time-
varying flowing layer are studied experimentally by means
of flow visualization in quasi-two-dimensional �2D� rotating
cylinders. A theory is developed using depth-averaged mass
and momentum balance equations and a perturbation solu-
tion is obtained. The paper is structured as follows. Experi-
mental details are presented in the next section. The theory
for flow in noncircular cylinders is given in Sec. III. Theo-
retical and experimental results and comparisons between the
two are presented in Sec. IV. Conclusions of the work are
summarized in Sec. V.

II. EXPERIMENTAL DETAILS

Experiments to determine the flowing layer profiles are
carried out in quasi-two-dimensional cylinders with different
cross-sectional shapes shown in Fig. 1—circle, square, star,
and retrofitted circles with two and four triangular wedges
pointing toward the axis and placed diametrically �referred to
as W2 and W4 below�. The length of the chord of the trian-
gular inserts in W2 and W4 is 2l and the apex angle is 2�.
The star cross section may also be considered to be W4 with
the circle diameter equal to the length of the largest diagonal.
The parameters for these geometries are given in Table I. L0,
half the minimum free surface length, is also given in Table
I for different geometries. The square, star, and W4 cross
sections are rotationally symmetric to 90° rotations whereas*khakhar@iitb.ac.in
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W2 is symmetric to 180° rotations. The thickness of the cyl-
inder is 10 mm in all cases. The sidewalls of square cross
section are made of aluminum, whereas other geometries
have acrylic sidewalls. A glass plate is used on the front for
good image quality. The back plate used is glass for the
square and star. In the cases of the circle, W2, and W4, an
acrylic back plate is used so as to facilitate attachment of the
inserts by screws for W2 and W4. A computer-controlled
stepper motor with a sufficiently small step is used to rotate
the cylinder. 1 and 3 mm glass beads in a narrow size range
��0.1 mm and �0.2 mm, respectively� are used in the ex-
periments, and the cylinders are half filled with particles.
Experiments are carried out at four different rotational
speeds �2, 3, 4 and 5 rpm�; the flow is in the rolling regime
in all cases. The cylinder is rotated at the set speed for suf-
ficiently long times to achieve a steady periodic motion be-
fore measurements are made. A digital camera �Nikon
Coolpix 5000�, focused on the flowing layer, is used to cap-
ture images while the cylinder is in rotation. Low shutter
speeds �1/4–1/30 s� are used so that the interface between the
flowing layer and the rotating bed is distinct. The procedure
followed for analysis is similar to that of Orpe and Khakhar
�13�.

Around 25 images are captured at different orientations
for W2 and W4 and around 60 images for the square and star
cross sections. Ten images are captured for a circular cross
section. A line is joined to the corners of the streak lines in
each image, representing the interface between the flowing
layer and the fixed bed, using an image analysis software
�Image Pro Plus�. Similarly, a line is drawn along the free
surface. The traced lines comprise about 20 points each in a
coordinate system with its origin at the cylinder. A sixth-
degree polynomial is fitted to each of these outlines. The
length of the flowing layer is obtained numerically from the
free surface polynomial. The thickness of the flowing layer
��� is obtained as the perpendicular distance from the bed-
layer interface to the free surface as given by the fitted poly-
nomials.

The absolute angle of orientation of each mixer, �, is
taken to be the angle with the horizontal made by the line

corresponding to the shortest length �Fig. 1�. The range of
angles is �0°,90°� for square, star, and W4 cross sections �as
the symmetry in these geometries is with respect to every
90° rotation� and is �0°,180°� for W2. The dynamic angle of
repose ��� is taken to be the angle of the free surface at the
midpoint �x=0�. This is obtained by calculating the deriva-
tive of the fitted polynomial curve of the free surface at x
=0. An image is captured after stopping the rotation of the
cylinder and the angle of the static free surface is taken to be
the static angle of repose ��s�.

III. THEORY

Consider the granular flow in a noncircular cylinder with
the length of the flowing layer �2L�t�� and the thickness of
the flowing layer ���x , t�� varying with time �t� as the cylin-
der rotates. The cross-sectional shapes of the cylinder are
limited to be those that are symmetric to 180° rotations, and
the cylinder is half filled with granular material so that the
free surface passes through the centroid of the cylinder at all
times. This results in simplification of the calculation of the
free surface length.

The depth-averaged mass and momentum balance equa-
tions for the flow in the layer are �9,13�

��

�t
+

��u��
�x

= − �x , �1�

��u��
�t

+
4

3

��u2��
�x

= g�A − 4cd
u2

�
, �2�

where u is the mean velocity in the layer, d is the particle
diameter, g is the acceleration due to gravity, and A=sin��
−�s� /cos �s. c�1.5, the collisional viscosity constant, and
�s, the static angle of repose, are model parameters. The
above equations are obtained assuming a linear velocity pro-
file, a constant bulk density in the layer and bed, and a spe-
cific form of the shear stress at the base of the layer com-
prising frictional and collisional components �9,13�. In Eq.
�2� the first term on the right-hand side is the gravitational
driving force less the frictional resistance, while the second
term gives the viscous term arising from collisional momen-
tum transfer. Equations �1� and �2� do not have a time-
periodic driving term, and the time periodicity of the flow
results from the boundary conditions, which depend on the
mixer orientation.

The layer thickness is much smaller than its length, and
we define a small parameter k, which is of the order of the

TABLE I. Geometric parameters for the different cylinders
used.

Shape L0 �mm� � �deg� l �mm�

Circle. 160.0.

Square 141.5

Star 119.0 73 165

W2 110.0 60 64

W4 110.0 60 64

l2

2L
0

2L

Star
Square

W2 W4

2λ

α

β α

FIG. 1. Noncircular geometries used in the experiments. Geo-
metrical features of the mixers are marked.
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ratio of the maximum layer thickness to the length of the
layer. Using this parameter, we obtain the following dimen-
sionless variables, which are used to rescale the governing
equations: �=x /L���, �=�t, 	=� /kL���, and U=uk /�L���,
where � is the cylinder rotational speed. The rescaled mass
balance equation �Eq. �1�� is

k
�	

��
+

��U	�
��

= − � − k	f , �3�

where f���= �1 /L�dL /d� is a known function determined by
the mixer shape. Noncircular cross sections, which have f
�0, thus result in an additional source term in the mass
balance equation. Similarly, the rescaled momentum balance
equation is

k
��U	�

��
+

4

3

��U2	�
��

=
	

L̄ Fr
−

4sU2

	L̄
− 2kU	f , �4�

where L̄=L /L0, L0=L�0�, and the dimensionless parameters
are the modified Froude number Fr=�2L0 /gk2A and the
modified size ratio s=cd /k2L0. Again, the structure of the
momentum balance equation is preserved but with an addi-
tional source term due to the changing free surface length.
The boundary conditions for the above equations are time
independent.

We consider the case of low rotational speeds when Fr
=O�k� or smaller, for which Eq. �4� reduces to

	

L̄ Fr
−

4sU2

	L̄
= 0, �5�

since s=1 /Fr as shown below. The dimensionless shear rate
is then

2U

	
= �s Fr�−1/2, �6�

and the shear rate is given by


̇ =
2u

�
= �gA/cd�1/2. �7�

Thus, in this limit, the shear rate is a constant, as found
earlier for a circular cylinder �18�. Further, taking k
= �� / 
̇�1/2 and using Eq. �7� and the definitions of Fr and s,
we obtain s Fr=1. Equation �6� then yields the dimensionless
mean velocity in the layer as U=	 /2. Using this result, the
rescaled continuity equation �Eq. �3�� reduces to

k
�	

��
+

1

2

��	2�
��

= − � − k	f . �8�

The layer thickness must vanish at the ends of the layer so
that we can use 	=0 at �=−1 or 	=0 at �=1.

Although it is not obvious from Eq. �8�, the layer profile
obtained from the equation is symmetric. The physical rea-
soning is as follows. The flow is in the positive � direction
throughout the layer. Material enters the layer in the portion
��0 and leaves the layer in the portion ��0. Referring to
Eq. �8�, if f �0 then the term k	f results in a lower flux into
the layer for ��0 and a higher flux out of the layer for �

�0. Both result in a lower layer thickness and hence have a
symmetric effect on the layer thickness. Similar arguments
can be made for f �0 and for the term k�	 /�� to show that
the layer shape is symmetric. This can also be seen from the
following derivation. Considering ��0, we have upon inte-
gration of Eq. �8�

	2 = �1 − �2� − kf�
−1

−�

	 d� − k
�

��
�

−1

−�

	 d� , �9�

using the boundary condition 	=0 at �=−1. Similarly, for
��0 we have

	2 = �1 − �2� − kf�
�

1

	 d� − k
�

��
�

�

1

	 d� , �10�

using the boundary condition 	=0 at �=1. Putting �=−� in
Eq. �9�, we obtain Eq. �10�, indicating that the layer thick-
ness profile is symmetric.

We consider next the long-time periodic solution of Eq.
�8� for the noncircular cylinder shapes, when the transients of
startup have decayed. Simulation of Eqs. �3� and �4� for a
circular cylinder indicate that transients decay rapidly—
typically within about 0.02 revolutions of the cylinder �see
Fig. 8 of �19��. The characteristic time for decay of transients
is thus d=1 / 
̇, while that for change in the free surface
length due to mixer rotation is L=1 /�. The ratio of the two
is given by d /L=k2, which is very small and hence tran-
sient flows may be neglected. A perturbation solution of the
rescaled mass balance equation of the form

	��,�� = 	0��,�� + k	1��,�� + ¯ �11�

is considered for the case when k is small. Upon substituting
in Eq. �8� and collecting terms of the same order, we obtain

1

2

��	0
2�

��
= − � , �12�

to order k0 �O�k0�� and

�	0

��
+

��	0	1�
��

= 	0f . �13�

to O�k1�. The boundary conditions are 	0=0 and 	1=0 at
�=−1.

Solving Eq. �12�, we obtain the layer thickness profile to
lowest order as

	0 = �1 − �2�1/2. �14�

Equation �14� implies that to O�k0� the scaled layer profile is
independent of orientation and the same as that for a circle.
Further, the layer shape maintains geometrical similarity
upon rotation of the mixer as found experimentally �6�. Sub-
stituting for 	0 into Eq. �13�, we obtain

��	0	1�
��

= − 	0f , �15�

which upon integration yields
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	1 = −
f

	0
�

−1

�

	0d� . �16�

Since 	0 is symmetric about �=0 it is straightforward to
show that

�
−1

�

	0d� = �
−�

1

	0d� , �17�

which implies that 	1�� ,��=	1�−� ,�� and that the layer
profile from the perturbation solution is also symmetric. Fur-
ther, 	1 vanishes at both ends of the layer as can be seen
from the following derivation using l’Hospital’s rule

lim
�→−1

1

	0
�

−1

�

	0d� = lim
�→−1

	0

d	0/d�
= lim

�→−1
−

�1 − �2�
�

= 0.

�18�

Thus the solution obtained is reasonable and the layer shape
profile is qualitatively similar to that for a circular cylinder.

Upon integrating Eq. �16� and combining with Eqs. �11�
and �14�, we obtain the layer thickness profile as

	��,�� = �1 − �2�1/2 − kf���� cos−1���
2	0

−
���
2
	 . �19�

The variation of the midlayer thickness with time is then

	�0,�� = 1 − kf���
�

4
. �20�

Now 	�0,0�=1−kf�0�� /4�1. This gives ��0,0� /kL0=1 so
that k=��0,0� /L0. Thus k is the scaled midlayer thickness at
the orientation when the length of the flowing layer is mini-
mum. We take k to be an input parameter for the model.

Assuming the free surface to be nearly flat, the length of
the flowing layer is a geometric property and can be obtained
in terms of the cylinder orientation angle for each cross sec-
tion using the following equations.

For the square,

L = 

L0

cos �m
if �m � �/4,

L0

sin �m
otherwise. � �21�

For the star,

L = 

L0

cos �m

tan �

�tan � − tan �m�
if �m � �d,

L0

sin �m

tan �

�tan � − 1/tan �m�
otherwise. � �22�

For W2 and W4,

L = 
 ��R2 − l2tan � − l�
R cos �m�tan � − tan �m�

if �m � �d,

R otherwise.
� �23�

In the above equations, �m=� mod�� /2� for the square, star,
and W4 and �m=� mod��� for W2. �= ��−�� is the differ-

ence between the absolute orientation angle � and the angle
of repose �. In the star cross section, �d=tan−1�l / �L0
+ l / tan ��� whereas �d=sin−1�l /R� in the case of W2 and W4
cross sections. R is the radius of the circle.

A finite-difference method �forward time, backward
space� is used to numerically solve the equation of the full
model �Eq. �8��. Only half the layer is considered ���0�,
taking advantage of the symmetry of the problem. A suffi-
ciently small time step �d�=1�10−4� and distance interval
�d�=1.67�10−3� are used. We compare our experimental
results with both theory �Eq. �19�� and computations �Eq.
�8��. The code for numerical solution was validated by solv-
ing Eq. �8� numerically for a circular cylinder �f =0� and
comparing with the exact solution �	= �1−�2�1/2�.

IV. RESULTS AND DISCUSSION

A comparison of the layer thickness profiles obtained
from numerical solution of the full model �Eq. �8�� and the
O�k� theory �Eq. �19�� are shown in Fig. 2 for a square.
Results are shown for two values of k �0.1 and 0.2� which
roughly span the range of the parameter values for the sys-
tems studied �k� �0.09,0.16��. The agreement between the
O�k� theory and full model results is reasonably good even
for a relatively large value of k �k=0.2, Fig. 2�b��, although
the agreement is better for k=0.1 �Fig. 2�a��. The deviation is
the largest at �=0, and we compare the variation of the
midlayer thickness �	�0,��� with orientation as predicted by
the full model and the O�k� theory in Fig. 3 for both large
and normal values of k. Although there is a good agreement
between the O�k� theory and the full model for most cross-
section orientation angles, there is a significant deviation
when the free surface is close to the corner of the square
��=45°�, where there is a discontinuity in f . Also, the devia-
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k=0.2

φ
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o
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(b)

FIG. 2. Comparison of the scaled layer thickness profiles
�	�� ,��� obtained from the full model �solid lines� and the O�k�
theory �dashed lines� for different mixer orientations ��� and k.
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tion increases with increase in k. The deviation occurs be-
cause f	�1 /k for large values of dL /d� and the perturba-
tion solution is no longer valid.

The scaled midlayer thickness varies in three different
phases: a slow decrease for �=0° –45°, a rapid increase be-
tween 45° and 60°, and a slow decrease between 60° and
90°. The different phases observed in the experiments can be
explained using Eq. �8�. When � is between 0° and 45°,
dL /d� is positive and its magnitude increases as it ap-
proaches the corner of the mixer �where the length of the
layer is maximum�. As a result, the time-dependent driving
term in Eq. �8� is negative �Fig. 4� and the scaled midlayer
thickness decreases monotonically. When the corner of the
cylinder is reached, the driving term in Eq. �8� changes sign,
resulting in a sharp increase in the scaled midlayer thickness.
In the final phase where dL /d� is negative, the source term
in Eq. �8� is positive but reduces in magnitude with rotation.
Thus the scaled midlayer thickness decreases.

Figure 4 shows the variation of f with � in the square and
W4 cross sections. A sharp change in f at �=45° can be seen
in the square, whereas is it discontinuous at three different
orientation angles in W4. The variation for the star cross
section is similar to that in a square but with an additional
discontinuity at �=0. The variation for W2 is very similar to
that for W4 but with f =0 between �=24° and 156°.

Figure 5 shows the experimental surface layer profiles for
3 mm particles rotated in a square at 3 rpm at four different
orientations. The absolute orientation angle �, the free sur-
face angle �, and the mixer orientation � are shown in the
figure. At ��39°, ��0, and the length is minimum. As �
increases, the length of the free surface increases. The maxi-
mum length of the layer is obtained when � is near 45°,
which in this case occurs when the orientation angle is close
to 86°. The length of the flowing layer shrinks upon further
increase of �.

Figure 6 shows the scaled flowing layer shapes at two
different orientation angles for different noncircular cross-
sections rotated at 5 rpm. The cylinder boundaries are not
shown in this figure for clarity. As can be seen, the thickness
of the flowing layer and the free surface angle change with
orientation angle of the mixer. The layer profiles in noncir-
cular cylinders are qualitatively similar to those in a circular
cross section �13�. Experimental measurements indicate that
the layer surface becomes curved at high rotational speeds
and the curvature is greater for 1 mm particles than 3 mm
particles, as found previously for circular cylinders �13�.

The scaled layer thickness profiles, � /L=k	, for 3 mm
glass beads in various geometries for three different rota-
tional speeds are shown in Fig. 7. The points are averages of
profiles measured at different orientations in noncircular
mixers and the error bars indicate the standard deviation
from the average value. With the increase in rotational speed,
the scaled thickness of the layer increases for all cross sec-
tions. The profiles are nearly symmetric for all cases, particu-
larly at lower speeds. For a particular rotational speed, the
midlayer thickness in noncircular cross sections is greater
than that in the circular cross section. The layer thickness
profiles �� /L=k	0� obtained from the O�k0� theory �Eq.
�14�� are shown as solid lines in the figure. The fitted values
of k, taken to be the ratio of the experimentally measured
midlayer thickness to the length of the flowing layer at �
=0, are indicated in the figure. The predictions of Eq. �14�
match reasonably well with the scaled experimental layer
thickness profiles. The results for 1 mm particles are similar.

The size of the error bars in Fig. 7 gives an indication of
the error of the measurement in circular cylinders, whereas it
indicates the accuracy of the scaling, in addition to the error,
for the noncircular cross sections. The results for the circle
indicate that the error in measurement is small. For the non-
circular cross sections the results show that the scaling is

0.8
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FIG. 3. Comparison of the scaled midlayer thickness �	�0,���
variation with mixer orientation ��� obtained from the full model
�solid lines� and the O�k� theory �dashed lines� for different k.
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FIG. 4. Variation of the specific rate of change of free surface
length with orientation �f = �1 /L�dL /d�� with mixer orientation ���
in square and W4 cross sections.
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quite good at lower rotational speeds �deviation of about one
particle diameter� and becomes increasingly inaccurate at
higher speeds �deviation up to three particle diameters�. The
deviations for the star, W2, and W4 cross sections are larger
as compared to those for the square. The error bars give the
average deviation from the mean over all orientations; how-
ever, the error may be larger at some orientations, as shown
below.

The dynamic angle of repose � varies with the orientation
angle � of the mixer and is shown in Fig. 8 for 3 mm glass
beads. At the lowest rotational speed �2 rpm�, the variation of
� is small in all cases. At higher rotational speeds, the angle
of repose decreases initially and after reaching a minimum
value, it again increases. The variation is similar to that of
the length L with orientation, and both � and L have minima

3
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β=39o

β=41o

β=40o

FIG. 5. Variation of the flowing layer for 3 mm particles rotated
in a square geometry at 3 rpm at different orientations. The relative
orientation �= ��−��, the difference between the orientation angle
� and the free surface angle � is also indicated for each case.
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FIG. 6. Experimentally obtained flowing layer shapes for 3 mm
particles rotated in different noncircular cross sections at 5 rpm.
Solid lines are for mixer orientation ��0° and dashed lines are for
��45°.
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and maxima at the same angles �Fig. 9�. In W2 and W4, the
angle of repose is nearly constant at times when the length of
the flowing layer is constant. In W2, the variation of � for
��90° is a mirror image of its variation for ��90° and is
not shown in the figure. A qualitatively similar trend is ob-
tained for 1 mm glass beads.

The length of the flowing layer in each cross section can
be calculated using Eqs. �21�–�23�. In our calculations, we

approximate � to be �0 �surface angle when the free surface
length is minimum�. Figure 9 shows comparison of the mea-
sured and calculated lengths of the free surface for 3 mm
glass beads in various cylinder cross sections at three differ-
ent rotational speeds. Symbols are experimental results and
solid lines represent calculations using Eqs. �21�–�23�, de-
pending on the cross section. The match is very good for all
geometries with the approximation of �=�0 in the above
equations. A similar match is found for experimental data for
1 mm glass beads. Thus variation in the surface angle during
rotation does not significantly affect the length. We use this
approximation in theoretical calculations given below.

Scaled layer thickness profiles measured at different ori-
entations are shown in Fig. 10 for 1 and 3 mm particles in a
square cross section rotated at 2 rpm. The error bars indicate
the standard deviation over at least three measurements. The
error bars are smaller as compared to those in Fig. 7 since the
averaging is over a narrow range of orientation angles in
each case ��2°�. The orientation angle �=10° corresponds
to a low value of the rate of change of length �dL /d��,
whereas this value is large at �=40° and 50°. The results
indicate that the midlayer thickness and the layer shape pro-
file change with orientation. The figure also shows the pre-
dictions of the full model and the O�k0� theory. The experi-
mental profiles have a sharper peak and are skewed
compared to the predicted profiles. The full model gives mar-
ginally better predictions than the O�k0� model, but there are
deviations in this case as well. The deviations are of the
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order of one particle diameter and were noted in �13� for
circular cylinders. Similar results are obtained at higher ro-
tational speeds and for the other cross sections.

A more detailed comparison between experimental results
and theory is considered in terms of the scaled midlayer
thickness �	�0,���. The variation of the measured midlayer
thickness with time for 1 and 3 mm glass beads in a square
cross section at different rotational speeds is shown in Fig.
11. The average midlayer thickness and the corresponding
standard deviation are calculated over every 5° rotation of
the mixer. The error bars indicate the standard deviation from
the average value in the figure. The error bars are larger in
the experiments carried out with 3 mm glass beads as com-
pared to the 1 mm particles. Predictions of the O�k� model
�Eq. �20�� and computational results from the full model �Eq.
�8�� are also shown in Fig. 11. The computational results
from the full model are close to the experimental results in
all three phases discussed earlier. The perturbation theory
gives good predictions everywhere except near the corners of
the square, where a discontinuous change in f occurs. Note
that the O�k0� theory yields a constant value of the scaled
midlayer thickness �	0�0,��=1�.

The variation of the scaled midlayer thickness with orien-
tation for the different cross sections is shown in Fig. 12 for
3 mm particles and two rotational speeds. The orientation
angles at which only single values are available are shown as
symbols without error bars in the figure. The qualitative
trend of variation of midlayer thickness is the same in both
square and star cross sections. In W2 and W4 geometries,
when dL /d�=0, the layer thickness is constant. The variation
of midlayer thickness in W2 for ��90° is similar to that for
W4 for ��45°. Results of the full model and the O�k� solu-
tion are also shown in the figure. The predictions of Eq. �8�
�full model� are once again closer to experimental values as
compared to those of Eq. �20� �O�k� solution� in all the cyl-
inder cross sections at 2 rpm. At the highest rotational speed
�5 rpm�, the match between experiments and theory is good
for W2 and W4. The deviations between model and experi-
mental values in the square and the star cross sections are
relatively higher at a few orientations of the mixer.

V. CONCLUSIONS

We presented a detailed study of the granular surface flow
in rotating cylinders with different cross-sectional shapes.
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The effects of particle size and rotational speed in each of the
cylinder cross sections were considered. The length and
thickness of the flowing layer change with orientation in
noncircular cross sections. The free surface becomes curved
at high rotational speeds and the curvature is greater for par-
ticles of smaller size. The shape of the layer in noncircular
cross sections is similar to that in a circle. The thickness of
the layer increases with particle size and rotational speed of
the cylinder. The thickness of the layer is higher for noncir-
cular cylinders than for a circular mixer.

The free surface angle ��� also changes periodically in
noncircular cross sections. The change of � with orientation
has a similar qualitative trend as the length, L���—both have
minima and maxima at the same orientations. The layer
length at any orientation depends on �= ��−�� and is deter-
mined by the geometry of the cylinder. The length of the
layer is not sensitive to variations in the surface angle ���,
and computations using the value of � at the orientation
when the length is minimum ��0� gave good predictions of
the layer length.

A model based on the depth-averaged mass and momen-
tum balance equations in the limit of low Froude numbers is
obtained for the flow in noncircular cylinders. The shear rate
in this limit is shown to be constant. The model predicts a
symmetric layer thickness profile for all cases. A perturbation
solution is obtained by considering an expansion in terms of
the small parameter k=��0,0� /L�0�. The perturbation solu-
tion is in reasonable agreement with the numerical solution
of the full model at all orientations except near corners of the
geometry, when there is a discontinuous change in dL /d�.
The perturbation solution to O�k0� indicates that the layer

thickness profiles scaled with L�t� are the same at different
cylinder orientations. This is in agreement with the model
proposed by Khakhar et al. �6�. To O�k� the theory indicates
that the changing layer length results in an additional source
term which produces a periodically varying scaled layer
thickness. For orientations where the length is increasing
�dL /d��0�, the source term is negative, resulting in a lower
scaled thickness, and for orientations for which dL /d��0,
the reverse is true.

The measured layer thickness profiles scaled by L��� and
averaged over different orientations of noncircular cylinders
are close to those predicted by the O�k0� model at low rota-
tional speeds. However, at high rotational speeds large error
bars are obtained, indicating inaccuracy of the scaling. The
layer thickness and the profile shapes change with orienta-
tion and the full theory gives better predictions than the
O�k0� theory. However, the experimental layer thickness pro-
files are more sharply peaked and slightly skewed compared
to the model predictions.

Detailed comparisons of the measured midlayer thickness
and predictions of the full model and perturbation solution
are presented. The variation of the scaled midlayer thickness
about 	=1, which corresponds to the O�k0� model, is sig-
nificant ��10% about the O�k0� value�. The full model gives
good predictions for all geometries, particularly at low rota-
tional speeds. The results indicate that deviations from the
O�k0� model �	0�0,��=1� are maximum at orientations of
the mixer at which there is a large change in dL /d�, that is,
when the free surface crosses corners. Such sharp changes in
the layer thickness may have an impact on mixing patterns.
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